The Mortar Element Method for 3D Maxwell’s equations: analysis and application to magnetodynamics

نویسندگان

  • Tony Chan
  • Takashi Kako
  • Hideo Kawarada
  • Olivier Pironneau
  • F. Rapetti
چکیده

In this paper, we describe the main ideas of the mortar element method combined with H(curl)–conforming finite elements for the numerical approximation of Maxwell’s equations. This method turns out to be a new non–conforming, non–overlapping domain decomposition technique where non–matching grids are allowed at the interface between adjacent sub–domains. We report the results on the method’s convergence and error estimate together with the description of the main implementation details and some numerical results.

منابع مشابه

A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell's equations

In this paper, we are concerned with mortar edge element methods for solving three-dimensional Maxwell’s equations. A new type of Lagrange multiplier space is introduced to impose the weak continuity of the tangential components of the edge element solutions across the interfaces between neighboring subdomains. The mortar edge element method is shown to have nearly optimal convergence under som...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Modified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials

In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...

متن کامل

A Quasi-dual Lagrange Multiplier Space for Serendipity Mortar Finite Elements in 3d

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained m...

متن کامل

Second Order Lagrange Multiplier Spaces for Mortar Finite Elements in 3D

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001